

SEASHINE

Safe Intelligent Agent to optimize ship energy management

Udayanto Dwi Atmojo (Staff Scientist, Aalto University)

<u>Udayanto.Atmojo@aalto.fi</u>

INSIDE Connect 2025

Problems and challenges

- Cruise ship industry needs to adapt to increasingly strict international environmental regulations – International Maritime Organization
- Heating, Ventilation, Air-conditioning systems are one of the most significant consumers of energy on cruise ships, but are hard to optimize
- Reinforcement Learning (RL) is capable of such optimization, however it is inherently hard to ensure its safety

Project, Objectives

- Utilize LLMs for safe and robust RL reward function generation
- Develop a safety "shield" that prevents the RL agent from executing unsafe actions
- Develop and validate safe and robust RL agent for ship energy management

Approach

LLM reward function generation results

- LLMs are quite capable of shaping reward function
- Outputted reward function was functionally correct since the first iteration

```
def reward(self, obs, action=None, prev action=None):
   energy, sensor data = self.surrogate model.exrtact output(obs, self.timestep)
   true_action = self.surrogate_model.denormalize_data(action.unsqueeze(0))[0]
   true prev action = self.surrogate model.denormalize data(prev action.unsqueeze(0))[0]
   reward = 0.0
   cost = 0.0
   # --- Energy Reward (still primary objective) ---
   reward -= 0.01 * (energy / 1e6) # Energy in MWh
   # --- Safety Violations (binary check) ---
   temperatures = sensor data[:, 0]
   humidities = sensor data[:, 3]
   airflow = true action[4] # in L/m²/s
   temp violation = (temperatures > 25.0).any() or (temperatures < 22.0).any()
   humidity_violation = (humidities > 0.55).any() or (humidities < 0.2).any()</pre>
   airflow violation = airflow < 0.0667 # L/s threshold
   violated = temp violation or humidity violation or airflow violation
   if violated:
       cost += 10.0 # Heavy penalty for *any* violation
       reward += 0.1 # Small bonus if no violation this step
   return reward, cost
```


STPA analysis and safety shield

Shield implementation includes a function that returns which constraints have been violated.

Blocks actions that lead to a violation and requests a new action.

White box simulation model of the ship energy system

- Cruise ship Hotel with HVAC and Lighting (Ida ICE)
- Battery storage model (Simulink)
- Generation (Load curve)
- High fidelity data but slow

Safe RL Agent - results

- Environment based on black-box model
- Discrete action space (10 bins)
- •Implemented:
 - ∘PPO (baseline)
 - oPenalized PPO (P3O) (safe RL)
- •Goal: Minimize energy & safety violations

TABLE II
INITIAL RESULTS OF REINFORCEMENT LEARNING EXPERIMENTS

Algorithm	Power consumption	Safety violations
Open loop control	$7.0 \pm 2.5 \text{ MWh}$	388.5 ± 151
PPO	$3.6 \pm 1.4 \text{ MWh}$	405.6 ± 121.5
P3O	$6.7 \pm 3.3 \text{ MWh}$	167.0 ± 139.8

TABLE III
INITIAL RESULTS OF INTEGRATING THE SAFETY SHIELD AND THE
LLM-BASED REWARD FUNCTION

Algorithm	Power consumption	Safety violations
P3O	6.7 ± 3.3 MWh	167.0 ± 139.8
P3O + LLM RF	$10.9 \pm 4.6 \text{ MWh}$	72.1 ± 83.7
P3O + shield	$6.4 \pm 3.0 \text{ MWh}$	64.4 ± 55.5
P3O + shield + LLM RF	11.5 ± 4.8 MWh	48.9 ± 47.7

Kiitos aalto.fi