

Digital Twinning and Copiloting

by Pal Varga

Budapest University of Technology and Economics Department of Telecommunications and AI

HOLA

I am interested in interoperability of cyber-physical system of systems,

5G / 6G mobile networks, and AI/ML applications in Industry5.0

Pal Varga – pvarga@tmit.bme.hu

Towards Industry5.0

Source: Google images

Oh, Engineers

Engineers:

AIMS 5.0 AI Toolbox Concept

Hollósi, G., Ficzere, D., Frankó, A., Bancsics, M., AlMahasneh, R., Lukovszki, C., & Varga, P. (2024, May). AIMS5. 0 AI Toolbox: Enabling Efficient Knowledge Sharing for Industrial AI. In NOMS 2024-2024 IEEE Network Operations and Management Symposium (pp. 1-6). IEEE.

Design, Develop, Deploy with Digital Twins by Default

Any industrial CPSoS lifecycle is better when executed with a **Digital Twin-first** approach.

G. Urgese, P. Azzoni, J. van Deventer, J. Delsing, A. Macii, and E. Macii, "A SOA-based engineering process model for the life cycle management of system-of-systems in industry 4.0," Appl. Sci., vol. 12, no. 15, p. 7730, Aug. 2022.

Execute the life-cycle elements on the DT-level first!

What DT-by-Default changes (vs. traditional)

- Closed-loop engineering
 - Live telemetry → model updates → prescriptive actions → verified outcomes
- Shift-left validation
 - Virtual commissioning & HW-in-the-Loop reduce
 floor time, rework, and ramp-up risk
- SoS composability
 - AAS/semantics let you assemble twins of assets, lines, and supply chains
- Governed performance
 - Contracts + SLOs for latency, jitter, loss; evidence for audits (safety, GDPR/AI-Act)
- Human-centric
 - Copilots, explainability, and safe handover for operators (Industry 5.0)

DevOps and MLOPs extended for Digital Twins

MLOps – Deploying ML models in Cloud infrastructures with Hyperautomation

https://sourceforge.net/software/mlops/

https://canonical.com/blog/what-is-mlops

CPS OPS: Extending MLOps to Cyber-Physical Systems

Cs. Hegedűs, P. Varga – Tailoring MLOps Techniques for Industry 5.0 Needs IEEE CNSM, Niagara Falls, Canada, 2023

Intent-based management of Cyber-physical **System of Systems**

Main goals and **Key components** of Intent-based CPS

High-level Objectives:

Translates human-defined business and operational goals into technical configurations.

Al-Driven Automation:

Uses machine learning to optimize system performance.

Continuous Adaptation:

Dynamically adjusts operations based on real-time data.

Intent Specification: Clear definition of goals & operational needs.

Automated Orchestration:

Automatic translation of intents into configurations.

Automated Execution:

Capabilities and calling tools.

Real-Time Monitoring:

Continuous evaluation and adjustments to meet defined intents.

Multi-agent behavior

Why Intent-based CPSoS management matters

Growing Complexity:

CPSoS "networks" are evolving with cloud, edge, and asset interoperability.

K Error Reduction:

Decreases manual configuration errors significantly.

Parameters Business Alignment:

Directly matches infrastructure and asset behavior with business goals.

Operational Efficiency:

Accelerates CPSoS changes and reduces response times.

Nation

Users define business goals in simple language.

Automatic Translation:

Al translates intents into detailed commands and configurations.

Real-Time Validation:

"DT" or CPS continuously validate behavior against defined intent.

Continuous Monitoring:

Al-driven systems adjust configurations dynamically for optimal performance.

Intent Specification

Continuous Monitoring

Workflow creation and execution

Co-pilot system with APIs towards tools

Use-cases for Industry5.0

Use Case: Smart Manufacturing

Automated Production: Self-optimizing assembly lines adapting to intent-driven objectives.

Downtime Reduction: Proactive maintenance driven by intent-based predictive analytics.

Flexible Operations: Seamless integration and modification of manufacturing workflows.

🚗 Use Case: Autonomous Vehicles

Dynamic Route Management: Optimal route planning based on real-time data and intent.

Traffic Safety: Intent-driven safety - adjusting vehicle behavior.

Energy Efficiency: Real-time optimization of energy usage.

Security and Reliability in CPS

Proactive Threat Detection: Identification & mitigation based on security intents.

Fault Management: Al-driven systems automatically adjusting to minimize disruptions.

Data Integrity: Ensuring data reliability and compliance.

Use Copilot with Digital Twins

Gracias por tu atención ©

Pal Varga – pvarga@tmit.bme.hu

